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|. INTRODUCTION

In[1,2], Xuand Prince introduced gradient vector flow (GVF), a
class of vector fields derived from images, that can be used as external
forces for deformable models[3]. Figure 1 illustrates the use of GVF
in a deformable model to extract a two-dimensional U-shape object.
GVF can be defined through either avariational formulation or a par-
tia differential equation. In this paper, we are concerned with the
variational formulation introduced in [2]. The solution to this varia-
tional formulation was obtained in [2] by first deriving the necessary
condition, the Euler-Lagrange Equation (ELE), and then solving the
ELE numerically. Here, we prove the convexity of the GVF varia-
tional formulation using the convexity analysis described in [4] and
point out that the corresponding ELE isin fact a sufficient condition
for globally minimizing the variational energy formulation.

Il. DEFINITIONS AND BACKGROUND

Let us denote a point in n-dimensional space R* by

x = (z',---,2"), a scdar function a = by f(x) =
f(z*,---,2™), and a vector function a x by wv(z) =
[z, -, 2™), -, 0" (z, -, 2™)]T. The gradient of f(x)
yields a vector function that is given by Vf = [, ..., 201"
and the gradient of v(x) yields a tensor that is given by Vv =
(Ovt/02%),i,j = 1,---, n. We denote the Euclidean inner product

between vector functions v and u as v - u. We aso define the inner
product between tensorsT and S asT - S = ijzl T;;S:;. We
further assume all these functions are defined in a bounded domain
Q C R" with 99 asits boundary.

As described in [2], the n-dimensiona GVF is defined as the
vector function v(z) in a subset of the Sobolev space denoted by
W3 () [5] that minimizes the following functional

J(v) :/g|Vv|2+h|v—Vf|2dw, (1)
Q

where g(x) and h(x) arenonnegative functions defined on €2, | Vv| is
the vector norm for tensors given by vVv - Vo, and |v — V f| isthe
usual Euclidean norm for vectors given by \/(v —Vf) - (v-=Vyf).

A decisive role in the optimization of a real-valued functiona .J
on alinear space ) such as the Sobolev space is played by Gateaux
variations [4]. Gateaux variations are directional derivatives of J in
Y that play similar roles as partial derivatives of real-valued function
defined on R™.

Definition 1 ([4], p45) Fory,v € V:
0J(y;v) o lim —J(y +ev) = Jy)
e—0 €

assuming that thislimit exists, is called the Gateaux variation of .J at
y inthedirection v.
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Note that both the definition and the discussion in the rest of the
paper is valid for either convex or strictly convex J. For compact
notation, the condition for strict convexity is enclosed in brackets.

Definition 2 ([4], p54) A rea-valued function J defined on a set
D(Q) inalinear space ) is said to be [strictly] convex on D pro-
vided that when y and y + v € D then §J(y;v) is defined and
J(y +v) — J(y) > 6J(y;v) [with equality iff v = 0].

Here 0 stands for the null function.

Proposition 1 ([4], p54) If J is[strictly] convex on D(2), a subset
of Y, then each yo € D for which §J(yo;v) = 0, Vyo +v € D
minimizes J on D [uniquely].

I1l. STATEMENT OF THE PROBLEM AND ITS PROOF

It iswell known that for an arbitrary functional .J, the solution to
the corresponding ELE isonly anecessary condition for alocal min-
imum. However, for functional that is[strictly] convex, Proposition 1
givesasurprisingly strong statement that not only the solution to ELE
isaminimum but also a[unique] global minimum. In this paper, we
prove the following proposition.

Proposition 2 The GVF functional defined in (1) is[strictly] convex
[when g and h are not both zero at any « € Q).

PROOF. We need to show J (v + u) — J(v) > 6J(v;u) holds
for Vu such that v + w € D. By substituting the definition of GVF,
we have

J(v+u) — J(v)

= /g|V(v+u)|2+h|U+u—Vf|2dw
Q

—/ g|Vo|® 4+ hlv — V|’ dx
Q

/ g(|Vv|® + 2Vv - Vo + |Vul?) + hllv — Vf]?
Q

+2(v — Vf) - u+ |[ul’] — g|Vv|* — hlv — Vf[’dz

/ g|Vul? + 29V - Vu + hlu)® + 2h(v — V) - ude.
Q
Similarly, we can show

Jw+eu)—J(v) = / 2egVv - Vu + €°g|Vu|”

Q
+2¢h(v — V) - u + ’hlu|*de.
Therefore, the Gateaux variation of GVF functional is given by

g 70 W) = J(0)

€—0 9

0J(v;u) =



= lim [ 29Vv-Vu+eg|Vu|’

e—0

+2h(v — V) - u + eh|u|’dx

= /2ng~Vu+2h(v—Vf)~udw.
Q

Thus, we have
J(v+u) — J(v) —d6J(v;u)
= /g|Vu|2+2ng-Vu+h|u|2+2h(v—Vf)-u
—S;gVU~Vu—2h(U—Vf)~udw

/ g|Vul> + hlu|*de.
Q

Since both g and h are nonnegative functions, we have
J(w+u)—J(w)—dJ(v;u) > 0.

For g and h that do not reach zero at the same location, then the

equality holdsif and only if w = 0. Hence, J(v) is[strictly] convex

[when g and h are not both zero at any « € €]. m]
The significance of convexity is seen in the following:

Proposition 3 Let Q2 beadomainin R" and set D = W3 (), then
each v € D satisfying GVF'sELE (see[6] for detailsin deriving the
ELE)

V- (9Vv) = h(v = V)
(Vv)N =0 on 09,

@)
©)

where N = [N',---,N"]T is the normal to the boundary 952 and
(Vo)N = [}r  0v'/ox'N*,--- 3" 0v™/ox'N*']*, mini-
mizes GVF functional .J on D [uniquely].

PROOF. As shown previously
0J(v;u) 2/ 2gVv-Vu +2h(v — Vf) - ude. 4
Q

We can integrate the first term by parts and use Green's theorem as
follows:

Vv -Vu = V- Vo)uldx — V- Vv)| - udx
[ 20 | ¥ ootz — [ 19 2g50)
= / [(2gVv)u] - Ndo — /[V - (2gVv)] - ude,
Ele)

Q

where do denotes the element of integration on 92. Since
/ [(2gVv)u]- Ndo = 2/ gl(Vv)' N - udo
o0 1219
= 2/ g[(Vu)N]-u =0
80
(here (V)T = Vv and v satisfies (3)), we have
d0J(v;u) = —/[V - (2gVv)] -uda:+/ 2h(v — V) - ude
Q Q

= 2/[h(v —Vf) =V (gVv)] - udex.

Because v satisfies (2), 6J(v;uw) = 0. Thus by Proposition 1 and
Proposition 2, » minimizes J on D [uniquely]. a

(b)

(d)

Fig. 1: (a) A line-drawing U-shape object. (b) The computed GVF field. (c)
The streamline plot of the GVF field. (d) A 2-D deformable model with GVF
as external forces progressively deforms from a polygon to the shape of the
object.

IV. REMARKS

The weighting functions g and h, in practice, are always chosen in
such a way that they are not both zero at the same location, hence
following both Proposition 1 and Proposition 3, the resulting ELE
always minimize the GVF functional uniquely on D. Finally, we note
that the existence of the solution to the GVF ELE has been proved

in[7.
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