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I. INTRODUCTION

In [1, 2], Xu and Prince introduced gradient vector flow (GVF), a
class of vector fields derived from images, that can be used as external
forces for deformable models [3]. Figure 1 illustrates the use of GVF
in a deformable model to extract a two-dimensional U-shape object.
GVF can be defined through either a variational formulation or a par-
tial differential equation. In this paper, we are concerned with the
variational formulation introduced in [2]. The solution to this varia-
tional formulation was obtained in [2] by first deriving the necessary
condition, the Euler-Lagrange Equation (ELE), and then solving the
ELE numerically. Here, we prove the convexity of the GVF varia-
tional formulation using the convexity analysis described in [4] and
point out that the corresponding ELE is in fact a sufficient condition
for globally minimizing the variational energy formulation.

II. DEFINITIONS AND BACKGROUND

Let us denote a point in n-dimensional space R
n by

x � �x�� � � � � xn�, a scalar function at x by f�x� �
f�x�� � � � � xn�, and a vector function at x by v�x� �
�v��x�� � � � � xn�� � � � � vn�x�� � � � � xn��T . The gradient of f�x�
yields a vector function that is given by rf � � �f

�x�
� � � � � �f

�xn
�T ,

and the gradient of v�x� yields a tensor that is given by rv �
��vi��xj�� i� j � �� � � � � n. We denote the Euclidean inner product
between vector functions v and u as v � u. We also define the inner
product between tensors T and S as T � S �

Pn

i�j��
TijSij . We

further assume all these functions are defined in a bounded domain
� � Rn with �� as its boundary.

As described in [2], the n-dimensional GVF is defined as the
vector function v�x� in a subset of the Sobolev space denoted by
W �

� ��� [5] that minimizes the following functional

J�v� �

Z
�

gjrvj� � hjv �rf j�dx� (1)

where g�x� and h�x� are nonnegative functions defined on �, jrvj is
the vector norm for tensors given by

prv � rv, and jv�rf j is the
usual Euclidean norm for vectors given by

p
�v �rf� � �v �rf�.

A decisive role in the optimization of a real-valued functional J
on a linear space Y such as the Sobolev space is played by Gâteaux
variations [4]. Gâteaux variations are directional derivatives of J in
Y that play similar roles as partial derivatives of real-valued function
defined on Rn.

Definition 1 ( [4], p45) For y� v � Y:

�J�y� v�
def
� lim

���

J�y � �v�� J�y�

�

assuming that this limit exists, is called the Gâteaux variation of J at
y in the direction v.
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Note that both the definition and the discussion in the rest of the
paper is valid for either convex or strictly convex J . For compact
notation, the condition for strict convexity is enclosed in brackets.

Definition 2 ( [4], p54) A real-valued function J defined on a set
D��� in a linear space Y is said to be [strictly] convex on D pro-
vided that when y and y � v � D then �J�y� v� is defined and
J�y � v�� J�y� � �J�y� v� [with equality iff v � ��.

Here � stands for the null function.

Proposition 1 ( [4], p54) If J is [strictly] convex on D���, a subset
of Y , then each y� � D for which �J�y�� v� � 	, �y� � v � D
minimizes J on D [uniquely].

III. STATEMENT OF THE PROBLEM AND ITS PROOF

It is well known that for an arbitrary functional J , the solution to
the corresponding ELE is only a necessary condition for a local min-
imum. However, for functional that is [strictly] convex, Proposition 1
gives a surprisingly strong statement that not only the solution to ELE
is a minimum but also a [unique] global minimum. In this paper, we
prove the following proposition.

Proposition 2 The GVF functional defined in (1) is [strictly] convex
[when g and h are not both zero at any x � �].

PROOF. We need to show J�v � u� � J�v� � �J�v�u� holds
for �u such that v � u � D. By substituting the definition of GVF,
we have

J�v � u�� J�v�

�

Z
�

gjr�v � u�j� � hjv � u�rf j�dx

�
Z
�

gjrvj� � hjv �rf j�dx

�

Z
�

g�jrvj� � 
rv � rv � jruj�� � h�jv �rf j�

�
�v �rf� � u� juj��� gjrvj� � hjv �rf j�dx

�

Z
�

gjruj� � 
grv � ru� hjuj� � 
h�v �rf� � udx�

Similarly, we can show

J�v � �u�� J�v� �

Z
�


�grv � ru� ��gjruj�

�
�h�v �rf� � u� ��hjuj�dx�

Therefore, the Gâteaux variation of GVF functional is given by

�J�v�u� � lim
���

J�v � �u�� J�v�

�



� lim
���

Z
�


grv � ru� �gjruj�

�
h�v �rf� � u� �hjuj�dx

�

Z
�


grv � ru� 
h�v �rf� � u dx�

Thus, we have

J�v � u�� J�v�� �J�v�u�

�

Z
�

gjruj� � 
grv � ru� hjuj� � 
h�v �rf� � u

�
grv � ru� 
h�v �rf� � udx

�

Z
�

gjruj� � hjuj�dx�

Since both g and h are nonnegative functions, we have

J�v � u�� J�v�� �J�v�u� � 	�

For g and h that do not reach zero at the same location, then the
equality holds if and only if u � �. Hence, J�v� is [strictly] convex
[when g and h are not both zero at any x � �]. �

The significance of convexity is seen in the following:

Proposition 3 Let � be a domain in Rn and set D � W �

� ���, then
each v � D satisfying GVF’s ELE (see [6] for details in deriving the
ELE)

r � �grv� � h�v �rf� (2)

�rv�N � � on ��� (3)

where N � �N�� � � � � Nn�T is the normal to the boundary �� and
�rv�N � �

Pn

i��
�v���xiN i� � � � �Pn

i��
�vn��xiN i�T , mini-

mizes GVF functional J on D [uniquely].

PROOF. As shown previously

�J�v�u� �

Z
�


grv � ru� 
h�v �rf� � u dx� (4)

We can integrate the first term by parts and use Green’s theorem as
follows:Z
�


grv � ru �

Z
�

r � �
g�rv�u�dx�
Z
�

�r � �
grv�� � udx

�

Z
��

��
grv�u� �Nd� �
Z
�

�r � �
grv�� � udx�

where d� denotes the element of integration on ��. SinceZ
��

��
grv�u� �Nd� � 


Z
��

g��rv�TN � � ud�

� 


Z
��

g��rv�N � � u � 	

(here �rv�T � rv and v satisfies (3)), we have

�J�v�u� � �
Z
�

�r � �
grv�� � udx�

Z
�


h�v �rf� � udx

� 


Z
�

�h�v �rf��r � �grv�� � udx�

Because v satisfies (2), �J�v�u� � 	. Thus by Proposition 1 and
Proposition 2, v minimizes J on D [uniquely]. �
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Fig. 1: (a) A line-drawing U-shape object. (b) The computed GVF field. (c)

The streamline plot of the GVF field. (d) A 2-D deformable model with GVF

as external forces progressively deforms from a polygon to the shape of the

object.

IV. REMARKS

The weighting functions g and h, in practice, are always chosen in
such a way that they are not both zero at the same location, hence
following both Proposition 1 and Proposition 3, the resulting ELE
always minimize the GVF functional uniquely onD. Finally, we note
that the existence of the solution to the GVF ELE has been proved
in [7].
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