

Medical robot design and control

MICCAI'09 Tutorial

on

Medical Robotics and Computer Assisted Intervention

Philippe Poignet and Etienne Dombre LIRMM, Montpellier, France

poignet@lirmm.fr and dombre@lirmm.fr

September 20th, 2009

LIRMM : Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (2)

- • Staff (01/01/2009): 366
	- •156 Faculty members (112 from University, 37 CNRS*, 7 INRIA**)
	- •14 Post-docs
	- • 35 Technical and Administrative staffs (8 from University, 21 CNRS)
	- •161 PhD students

www.lirmm.fr

•

***CNRS: French National Center of Scientific Research ** INRIA: National Research Institute for Computer Sciences and Automatic Control**

-
-

- • Future directions and technical challenges
	- -Intra-body robotics
	- $\mathcal{L}_{\mathcal{A}}$ Beating heart surgery
- \bullet Some control issues in assisted MIS and cardiac surgery

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (4)

•**Specifications**

- lightweight, smaller, simpler, cheaper,
- integration in the OR: plug-and-play systems
- setup and skin-to-skin times as in conventional procedure
- sensors: sterilizable or disposable
- - MMI: easy and friendly cooperation between Surgeon and Robot ("Hands-on" / Co-manipulation concept: the surgeon operates the device)…

•**Trends:**

- Dedicated robotized instruments ("smart" insrument)
- Autonomy

\rightarrow Towards intra-body robotics

- Tele-operated mini-manipulators / instrument holders / surgical end-effectors
- -Robotized colonoscopes and autonomous pills
- Active catheters
- \rightarrow Towards beating heart surgery

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (5)

•**Mini-manipulators "inside the body"**

- could be a device fixed on the trocar or distal part of an instrument
- high dexterity: they should compensate at most for the loss of mobility due to the trocar
- size requirements : \varnothing < 10mm, L = a few cm, small radius of curvature
- Force capabilities: a few Newtons (penetration force in a coronary artery $= 1N$), up to 50 N to grasp a needle

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (6)

•**Mini-manipulators "inside the body"**

2 design approaches:

LIRMM

Embedded actuators: mini-serial (or parallel) manipulators made of rigid bodies and discrete joints *bulky, power limitation,*

low reliability of actuators

Remote actuators:

- **→ Two approaches :**
	- **Rigid-linkage mechanisms:** *bulky, complexity*
	- **Wire-driven mechanisms:** *high dexterity but*

if cable-drives: backlash, limited reliability if SMA wires (NiTi): large stroke length / weight ratio but limited bandwidth

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (7)

- • discrete architecture (e.g. with ball joints)
- • or "continuous" backbone ("snake-like")

Disposable plastic compact wrist (LAAS, Sinters 2004): plastic vertebra+balls and NiTi super-elastic wires

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (8)

HARP (Robotics Institute, Hydraulic // manipulator CMU, Pittsburg), 2006 (KUL, Leuven), 2000 Laser manipulator Φ 2.4mm $1¹$ 12.1 mm 15 $0V₁$ dalah dalam dalam fiber **Fujie lab. (Waseda Micro-manipulator for Intrauterine fetal University, Tokyo) surgery (Wasesa Univ., Japan), 2005 Bending forceps based on rigid linkage mechanism (Univ. Tokyo), 2003 Bending US coagulator/cutter (Women's Medical Univ. Tokyo), 2004 Endoscope (Univ. Berkeley)** Slave Master **Reboulet's redundant wrist (CERT / ONERA, Toulouse), 1999**

LIRMM

HyperFinger (Nagoya Univ., Japan), 2003

Hand-held motorized instruments

MICRON tremor cancelling instrument (CMU, Pittsburgh): eye surgery

Ikuta Lab. (Nagoya University)

Fujie lab. (Waseda University, Tokyo) Research 20 Youth Controllering to the Second Aerospace Center, DLR, Germany)

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (11)

HeartLander (The Robotics Institute, CMU, Pittsburgh)

… an inchworm-like mobile robot for minimallyinvasive beating-heart cardiac surgery

In vivo mobile robot (Robotics & Mechatronics Lab., Univ. Nebraska)

… a wheeled-driven mobile robot to be placed in the abdominal cavity

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (12)

•**Robotized colonoscopes / autonomous pills**

- Goal: Inspection of the gastrointestinal tract (small intestine, colon).
- Colon cancer: one of the main causes of death in the industrialized countries
- Detection and resection of polypus
- Currently, manual colonoscopy: push-type flexible endoscope (up to Ø 2cm) with CCD camera, optical fiber for illumination, working channels (air, water, wireactuated instruments for biopsy…)
- Technically demandind for the coloscopiste, unpleasant for the patient

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (13)

- **Solutions**

-Semi-autonomous colonoscope: self propelling robot with a tether to transport fluids and energy

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (14)

- **Solutions**

- -Semi-autonomous colonoscope: self propelling robot with a tether to transport fluids and energy
- -Autonomous untethered pill swallowed by the patient (thus, the whole tract may be inspected)

Accordeon effect

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (15)

Intracorporeal Video Probe

L = 20 mm, \varnothing = 8 mm **CMOS** technology RF trasmission data **With steerable camera**

PillCam SB2 : L = 26 mm, Ø = 11 mm P = 3,7 g Autonomy : 6h à 8h 2 images / sec. (240x240 pixels) -**> 50000 images to process!**

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (16)

LIRMM

Medical Micro robot

ОΟ

Smart capsule endoscope (Olympus Co., Japan)

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (17)

- **Technical issues**

LIRMM

- -Energy storage for longer autonomy
- - Active locomotion (wrt natural peristaltic waves of the tract):
	- •biomimetic approaches: Inchworm, legs (SSSA), cilia, swimming (fins, tails)
	- •sliding clampers
	- •paddling
	- •inertia impact

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (18)

SSSA, ARTS Lab., Pise

- **Technical issues**

LIRMM

- -Miniaturization, energy
- - Active locomotion (wrt natural peristaltic waves of the tract):
	- •biomimetic approaches: Inchworm, legs (SSSA), cilia, swimming (fins, tails)
	- •sliding clampers
	- •paddling
	- •inertia impact
- Clamping capabilities
	- •mechanical grippers
	- •suction
	- •biomimetic approaches: gecko, beetle, fly, cockroach pads…

Lamellae → Setae (mm) → Nano-fibers (200 nm)

4 μm molded polyurethane fibers

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (20)

•**Active catheters**

- Catheter: a tube that can be inserted into a body cavity duct or vessel. Catheters thereby allow drainage or injection of fluids or access by surgical instruments (Wikipedia). Also used for angioplasty, blood pressure measurement...
- Typical sizes: \varnothing <2-3 mm, L > 1m
- Manually introduced by the surgeon, often at the level of the groin in the femoral artery, by pushing and rotating actions under X-ray control
- Difficulty: transmit force and motion to the catheter tip with no or poor tactile feedback while minimizing X-ray irradiation. Risks of perforation of the artery or vein

\rightarrow Solution

- Active bending of the tip
- -Actuation: Hydraulic, SMA, conductive polymers…

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (21)

Sensei Robotic Catheter System (Hansen Medical, Mountain View, CA), 2002

Steerable catheter for percutaneous procedures:

- Remote accurate positioning, manipulation and stable control in 3D
- The doctor is then shielded from radiation exposure
- - « Instinctive » control: the catheter immediately replicates the hand movement of the motion controller

 \bullet

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (22)

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (23)

Film..\Conf. Rob Méd\MALICA.avi

MALICA (LIIA, Paris XII): aneurysm repair

LIRMM

- Guidance of catheter to fix endoprothesis inside the artery (aortic aneurysm repair)
- **•** Hydraulic « Snake like » robot: 2 ddl, Ø 5mm x 20mm

MINOSC (5th FP EU project coordinated by SSSA, Pisa): precise and early diagnosis of spinal cord lesions

Endoscopy of the spinal cord: navigation in the cerebrospinal fluid with micro-jets to avoid touching tissues Ø 2.7 mm

Notes robot (Robotics &

Mechatronics Lab., Univ. Nebraska)

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (24)

Transluminal endoscopic surgery

- NOTES : Natural Orifice Transluminal Endoscopic Surgery
- Incisionless surgery
- Through transgastric and transvaginal route
- Justification:

LIRMM

- reduction or absence of postoperative pain
- ease of access to some organs
- absence of trauma to the abdominal wall
- ideal cosmetic results

"Anubis operation" (transvaginal cholecystectomy using a flexible endoscope), Storz, IRCAD, LSIIT Strasbourg, April 2007

Endoscopy surgery system (Nagoya Univ.), 2004

- • **Projet ARAKNES :** Array of Robots Augmenting the KiNematics of Endoluminal Surgery (2008-2011)
- • SSSA (Pise), Univ. Pise, Imperial College (Londres), EPFL (Lausanne), LIRMM, Univ. Barcelone, Karl Storz, ST Microelectronics…
- •Pathology: morbid obesity and gastro-oesophageal reflux
- \bullet Design of mini-robots with anchoring and locomotion capabilities; mounted on a deployable and collapsible platform; equipped with appropriate sensors; introduced in the stomach through oesophagus; all components will be teleoperated (thetered in a first step, then wireless)

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (26)

•**Technical challenges**

- lightweight, smaller, simpler, cheaper,
- integration in the OR: plug-and-play systems
- setup and skin-to-skin times as in conventional procedure
- sensors: sterilizable or disposable
- - MMI: real cooperation between Surgeon and Robot ("Hands-on" / Comanipulation concept: the surgeon operates the device)…

•**Trends:**

- Dedicated robotized / "smart" instruments
- Autonomy

\rightarrow Towards intra-body robotics

- Tele-operated mini-manipulators / instrument holders
- -Robotized colonoscopes and autonomous pills
- Active catheters
- \rightarrow Towards beating heart surgery

Minimally-invasive beating heart surgery

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (27)

- **Invasive surgery:**
	- open the chest (sternotomy)
	- setup the heart-lung machine
	- stop the heart
	- execute the surgical gestures,
	- restart the heart and close the chest
	- many drawbacks: risk, pain…
- **Minimally invasive surgery:**
	- Off-pump surgery without stopping the heart
	- execute the surgical gestures through trocars

Minimally-invasive beating heart surgery

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (28)

• **Requirements:** compensate for physiological motions (heart beats and respiratory motions)

- **Solutions:**

make use of a **mechanical stabilizer**

Octopus , Medtronic

make use of an **active stabilizer**

•Active stabilizer

Minimally-invasive beating heart surgery

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (31)

J. Gangloff, LSIIT, Strasbourg

Minimally-invasive beating heart surgery

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (32)

• **Requirements:** compensate for physiological motions (heart beats and respiratory motions)

- **Solutions:**

make use of a **mechanical stabilizer**

make use of an **active stabilizer**

 or **virtually stabilize the region of interest with a robot**

- *develop appropriate visionbased (endoscopy or echography), force-based and model-based control algorithms*

- **Future directions and technical challenges**
	- -Intra-body robotics
	- -Beating heart surgery

- \mathbb{R}^n From open to minimally invasive surgery …
- \mathbb{R}^n … to improve surgical operation conditions for the patient
	- •With less risk and trauma
	- •Quick return to daily life

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (35)

MIS limitations

- \mathbb{R}^n Monocular vision - depth information lost
- \blacksquare Decreased mobility
	- Hand-eye coordination
	- Three hands required
	- No tactile feedback
	- Surgeon position

…

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (36)

Robotized MIS

LIRMM

Zeus (Computer Motion)

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (37)

\blacksquare Advantages of robotized MIS

- •Increase dexterity of surgeon gestures
- •Movement coordination
- • Possibility of enhancing the visualization of the operating field through e.g. stereo view of the operating site
- \mathbb{R}^n **Main limitations**
	- •Price
	- \bullet Size
	- But also
	- •No actual solution to feedback interactions between organs and instrument to the surgeon
	- •No actual solution for compensating physiological motions or stabilizing the environment

Three challenges …

- Increasing the perceptual capabilities in MIS through force feedback teleoperation
- \blacksquare 3D reconstruction of the beating heart surface for assisted cardiac surgery
- Automatic guidance under ultrasound images

Increasing the perceptual capabilities in MIS through force feedback teleoperation

[CDC'07] Zarrad W., Poignet P., Cortesão R., Company O., Stability and Transparency Analysis of a Haptic Feedback Controller for Medical Applications, CDC'07: International Conference on Decision and Control (2007)

[IROS'07] Zarrad W., Poignet P., Cortesão R., Company O., Towards Teleoperated Needle Insertion with Haptic Feedback Controller, IROS'07: International Conference on Intelligent Robots and Systems (2007)

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (40)

Force feedback teleoperation control

- $\overline{}$ **Objectives**
	- Remotely manipulate the robot
	- Free space motion / Contact with different stiffness objects
	- Force feedback
	- Trade-off between stability and transparency

$\mathcal{L}_{\mathcal{A}}$ Control approach

[Delft Univ. Tech. 2007]

Force active observer

Compliant motion with force controlled robot and force active observer

- **Principles**
	- State estimation using Active Kalman Filtrering
	- Additional active state
	- Feedback gain tuned to limit under/overshoot

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (42)

LIRMM

Adaptive force control

 \mathbf{r} Environment stiffness estimation

Teleoperation scheme with environment stiffness estimation strategy

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (43)

LIRMM

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (44)

Needle insertion

3D reconstruction of the beating heart for assisted cardiac surgery

[MICCAI'08] Richa R., Poignet P., Liu C., Efficient 3D tracking for motion compensation in beating heart surgery 11th International Conference on Medical Image Computing and Computer Assisted Intervention, (2008)

[IROS'08] Richa R., Poignet C., Liu C., Deformable motion tracking of the heart surface, IROS'08 : IEEE/RSJ 2008 International Conference on Intelligent ROobots and Systems (2008)

AccuRobAs (Accurate Robot Assistant) European Project funded from the European Community Sixth Framework Program (FP6 / 2006-2009) under grant agreement num. 045201.

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (46)

LIRMM

Cardiac MIS

- The goal of cardiac MIS is to avoid stopping the heart and using the cardiopulmonary bypass
- Manual tracking is painfull, tiring and compromises the precision required for an anastomosis
- **Contract Contract C** Use of mechanical stabilizers (e.g. Medtronic Octopus, …) [Lemma 05]
- Residual motion of the heart is still high
- Toward assisted beating heart surgery

One challenge

- $\mathcal{L}_{\mathcal{A}}$ Automatically compensate for physiological motion (beating heart and/or breathing)
	- • Virtually stabilize the heart motion thanks to the use of external sensors (force, vision, …)
	- •In the following, we focus on vision sensor
- Challenge : accurate motion estimation of the heart deformable surface without the use of artificial landmarks i.e. tracking natural features
- \Box **Difficulties**
	- •High dynamics and non rigid object with complex motion
	- •Illumination changes and specular reflection
	- •Occlusions due to surgical instruments, blood, etc.

Physiological motion compensation

- $\mathcal{L}_{\mathcal{A}}$ Y. Nakamura e*t al*., Heartbeat synchronization for robotic cardiac surgery, ICRA 2001
	- • First (impressive) high speed visual servoing experiment which uses a serial 4 dof robotic finger to track a marker attached to the heart
- \mathbb{R}^2 R. Ginhoux *et al*. Active filtering of physiological motion in robotized surgery using predictive control, IEEE TRO 2005
	- •Also high speed vision system and optical markers
	- •Advanced control
- \mathbb{R}^2 O. Bebek and M. C. Çavusoglu. Intelligent control algorithms for robotic assisted beating heart surgery, IEEE TRO 2007
	- • Multi-sensors fusion including biological signals considering that some of them precedes heart motion

Tracking heart surface motion using vision

Two classes of methods for motion estimation are used:

Feature based tracking [Stoyanov 05a, Noce 06]

Detection and tracking of given structures on the heart surface (e.g. blood vessels)

Region based tracking [Ortmaier 02, Lau 04, Stoyanov 05b, Richa 08]

Deformation of a whole region of interest is estimated based on a parametric model (e.g. FFD, Spline, TPS)

- \blacksquare Region based tracking is rather well adapted to heart surface deformations
- $\mathcal{L}_{\mathcal{A}}$ Thin-Plate Splines transformations have been successfully applied to model nonrigid deformations for numerous applications (augmented reality, registration, etc.) [Malis 2007]
- $\mathcal{L}_{\mathcal{A}}$ Extension of the TPS transformations for 3D tracking in a stereo framework.
- $\mathcal{L}_{\mathcal{A}}$ Difference with the other region based approaches -> exact tracking of the surface

Thin-Plate Spline mapping

 \mathbf{c}^{\prime}

The TPS is a radial basis function that specifies an approximation function f which minimizes the bending energy

$$
m(\mathbf{x}) = \begin{bmatrix} f^x \\ f^y \end{bmatrix} = \begin{bmatrix} r_2^x & r_3^x & r_1^x \\ r_2^y & r_3^y & r_1^y \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} + \sum_{i=1}^n \begin{bmatrix} w_i^x \\ w_i^y \end{bmatrix} U(||\mathbf{c}_j - \mathbf{x}||)
$$

where $U(\text{s}) = \text{s}^2 \text{log}(\text{s}^2)$ and $\{r, w\}$ are the TPS coefficients.

■ 2D warping:
$$
w(\mathbf{x}_i, \mathbf{h}) = [\mathbf{x}'_i \ \mathbf{y}'_i] = [\ \mathbf{M}_i \ \mathbf{K}_* \mathbf{h}^x \ | \ \mathbf{M}_i \ \mathbf{K}_* \mathbf{h}^y]
$$

• Tracking:
$$
\min_{\mathbf{h}} \epsilon = \sum_{\mathbf{x} \in \mathbf{A}} \left[\mathbf{I}(w(\mathbf{x}, \mathbf{h})) - \mathbf{T}(\mathbf{x}) \right]^2
$$

X

Stereo tracking problem

Estimation of an optimal warping parameter vector **h** that minimizes the alignment error between the reference image **T** and both left and right images of the stereo pair **I**_I and **I**_r simultaneously.

The control points are seen as the projections of 3D points onto the image plane

Assessment of the model

Comparison of the 3D surface shape of an *ex-vivo* heart from a pig approximated by a TPS surface and the ground truth provided by a laser profilometer (0.2mm depth precision)

Detail of heart surface shape retrieved by the laser-profilometer

Surface approximation by the TPS model 4cm*4cm region 25 control points

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (55)

Approximation error

Average approximation error: 0.24 mm Standard Deviation: 0.19 mm Maximum Error Value: 1.1 mm

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (56)

Experimental setup

- **Stereo endoscope of the DaVinci system**
- **Image sequence 50 Hz**
- 320*288 color images
- Calibration using a planar object [Zhang 00]
- **Tracking : 80*80 pixels region using 6 control points**

Courtesy of Intuitive Surgical, Inc., 2008

Acknowledgement : Image sequences from the DaVinci system are provided by D. Stoyanov and Y. Guang-Zhong, Imperial College London, England

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (57)

3D Motion Tracking for Beating Heart Surgery using a Thin-Plate Spline **Deformable Model**

R. Richa, P. Poignet, C. Liu

LIRMM **UMR 5506 CNRS UM2 University of Montpellier, France**

Some other results on:

- Illumination modeling and specular detection
- Model prediction to improve the optimization convergence and the robustness

On going research:

- Real-time implementation (GPU NVIDIA GeForce GTX 280)
- Robustness improvement Not yet robust enough w.r.t. shadows, appearance changes, instrument occlusions -> motion prediction to tackle the occlusions
- In-vivo evaluation with high speed camera

Automatic guidance under ultrasound images

[IJRR'08] Sauvée M., Poignet P., Dombre E., Ultrasound image-based visual servoing of a surgical instrument through nonlinear model predictive control, International Journal of Robotics Research 27, 1 (2008) 25-40

 \mathbb{R}^n Objective : to assist the surgeon to repair mitral valve broken cordages during beating heart surgery under US images

- $\mathcal{L}^{\text{max}}_{\text{max}}$ Difficulties :
	- •Valve motion observed with US probe
	- •High dynamics
	- •Large motion of leaflets
	- •Possible motion of the heart

GABIE Project - ROBEA CNRS LIRMM, LRP, TIMC, CEA/SRSI, GHPS Pité-Salpêtrière (Paris), CHU Grenoble

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (61)

Ultrasound images visual servoing

Simulator,

P. Poignet and E. Dombre, MICCAI'09 Tutorial on MRCAI, London (62)

Ultrasound images visual servoing

$\overline{}$ Predictive technique

- • Future directions and technical challenges
	- -Intra-body robotics
	- $\mathcal{L}_{\mathcal{A}}$ Beating heart surgery
- \bullet Some control issues in assisted MIS and cardiac surgery