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ABSTRACT

The increased high-resolution capabilities of modern medical im-
age acquisition systems raise the crucial tasks of effectively stor-
ing and interacting with large databases of such data. The ease of
image storage and query would be unfeasible without compression,
which represents high-resolution images with a relatively small set
of signi cant transform coef cients. Due to the speci c content of
medical images, compression often results in highly sparse repre-
sentations in appropriate orthonormal bases. The inherent property
of compressed sensing (CS) working simultaneously as a sensing
and compression protocol using a small subset of random projection
coef cients, enables a potentially signi cant reduction in storage re-
quirements. In this paper, we introduce a Bayesian CS approach for
obtaining highly sparse representations of medical images based on
a set of noisy CSmeasurements, where the prior belief that the vector
of transform coef cients should be sparse is exploited by modeling
its probability distribution by means of a Gaussian Scale Mixture.
The experimental results show that the proposed approach maintains
the reconstruction performance of other state-of-the-art CS methods
while achieving signi cantly sparser representations of medical im-
ages with distinct content.

Index Terms— Bayesian compressed imaging, Gaussian scale
mixture, medical imaging, sparse Bayesian learning, sparse repre-
sentation.

1. INTRODUCTION

The design of modern high-resolution imaging devices in medical
applications have increased the amount of image data at an explo-
sive rate. The storage and interaction with large databases of medi-
cal image data necessitates the development of ef cient compression
techniques and standards [1, 2]. However, even higher compression
rates could potentially suf ce to carry out a speci c task, such as im-
age classi cation and retrieval, where a high-quality reconstruction
of the still images is not necessary.

Several studies [3] have shown that appropriate transforms (e.g.,
wavelets and sinusoids) of many natural signals often reveal certain
structures allowing for compact and sparse representations. This
also holds for many medical images, since they consist primarily
of edges on a relatively homogeneous background. For instance,
the 2-D Discrete Wavelet Transform (DWT) of such images results
in a large number of coef cients with negligible amplitude and a
small number of large-amplitude coef cients concentrated about the
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edges. The common approach to compressing such a sparse image
is to compute its transform coef cients and then store only the most
“signi cant” ones. However, this is an inherently wasteful process
(in terms of both sampling rate and computational complexity), since
one gathers and processes the entire image even though an exact rep-
resentation is not required explicitly.

Compressed sensing (CS) is a recently introduced framework
for simultaneous sensing and compression [4, 5] enabling a poten-
tially signi cant reduction in the sampling and computation costs.
In particular, a signal having a sparse representation in a transform
basis can be reconstructed from a small set of projections onto a sec-
ond, measurement basis that is incoherent with the rst one. The
majority of previous studies about the sparse representation and re-
construction of a signal in an over-complete dictionary using CS,
solve constrained-based optimization problems.

Several recent papers exploit the sparsity of images using CS to
increase the compression rates [6, 7]. In addition, the CS framework
has been already applied in the eld of Magnetic Resonance Image
(MRI) reconstruction with very promising results [8, 9]. Recently, a
Bayesian CS (BCS) framework was introduced [10] resulting in cer-
tain improvements when compared with norm-based CS methods.
In particular, the prior belief that the vector of transform coef cients
should be sparse was expressed by employing a hierarchical model
as a sparsity-enforcing prior distribution on the sparse coef cients
vector. In the present work, we model directly the coef cients vec-
tor using a Gaussian Scale Mixture (GSM). The experimental results
reveal that this approach yields a signi cantly sparser representation
of several medical images with distinct content, while also maintain-
ing a high reconstruction performance.

The paper is organized as follows: in Section 2, we brie y re-
view the main concepts of BCS and introduce the GSM-based BCS
method. In Section 3, we compare the performance of the proposed
approach with recent state-of-the-art CS methods in terms of the de-
gree of sparsity and the reconstruction quality, while we conclude in
Section 4.

2. BAYESIAN CS RECONSTRUCTION

LetΨ be a N × N matrix, whose columns correspond to the trans-
form basis functions. Then, a given image �f ∈ R

N (reshaped as a
column vector) can be represented as �f = Ψ�w, where �w ∈ R

N is
the coef cient vector. Obviously, �f and �w are equivalent represen-
tations of the image, with �f being in the space domain and �w in the
(transform)Ψ domain. As mentioned above, for natural images with
speci c content, such as edges and lines in the case of many medical
images, the majority of the components of �w have negligible ampli-
tude. In particular, �f is L-sparse in basis Ψ if �w has L non-zero
components (L � N ). In a real-world scenario �f is not strictly
L-sparse, but it is said to be compressible when the re-ordered com-
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ponents of �w decay at a power-law.
Consider also anM ×N (M < N ) measurement matrixΦ (the

over-complete dictionary), where the rows of Φ are incoherent with
the columns ofΨ. For instance, let Φ be a matrix with independent
and identically distributed (i.i.d.) Gaussian entries. Such matrices
are incoherent with any xed transform matrix Ψ with high proba-
bility (universality property) [5].

If �f is compressible inΨ, then it is possible to perform directly
a compressed set of measurements �g, resulting in a simpli ed image
acquisition system. The relation between the original image �f and
the CS measurements �g is obtained through random projections, �g =

ΦΨT �f = Φ�w , where Φ = [�φ1, . . . , �φM ]T and �φm ∈ R
N is a

random vector with i.i.d. components. Thus, the reconstruction of �f
from �g reduces to estimating the sparse weight vector �w.

Most of the recent literature on CS [11, 12] has concentrated on
solving constrained-based optimization problems for sparse signal
representation. For instance, in the case of CS measurements cor-
rupted by additive noise �η with unknown variance σ2

η , �g = Φ�w + �η,
the �1-norm minimization approach seeks a sparse vector �w by solv-
ing the following optimization problem,

�̃w = arg min
�w

‖�w‖1 , s.t. ‖�g − Φ�w‖∞ ≤ ε , (1)

where ε is the noise level (‖�η‖2 ≤ ε). The main approaches for
the solution of such optimization problems include linear program-
ming [13] and greedy algorithms [14], resulting in a point estimate
of the weight vector �w.

On the other hand, when working in a probabilistic framework,
then given the prior belief that �w is sparse in basis Ψ and the set of
CS measurements �g, the objective is to formulate a posterior prob-
ability distribution for �w. This improves the accuracy over a point
estimate and provides con dence intervals (error bars) in the approx-
imation of �f , which can be used to guide the optimal design of addi-
tional CS measurements with the goal of reducing the uncertainty in
reconstructing �f .

Under the common assumption of a zero-mean Gaussian noise,
we obtain the following Gaussian likelihood model,

p(�g|�w, σ2
η) = (2πσ2

η)−M/2 · exp
(− 1

2σ2
η

‖�g − Φ�w‖) . (2)

Assuming that Φ is known, the quantities to be estimated, given the
CS measurements �g, are the sparse weight vector �w and the noise
variance σ2

η . This is equivalent to seeking a full posterior density
function for �w and σ2

η .
In this probabilistic framework, the assumption that �w is sparse

is formalized by modeling its distribution using a sparsity-enforcing
prior. A common choice of this prior is the Laplace density [15].
However, the use of a Laplace prior density raised the problem that
the Bayesian inference may not be performed in closed form, since
the Laplace prior is not conjugate1 to the Gaussian likelihood model.
The treatment of the CS measurements �g from a Bayesian view-
point, while overcoming the problem of conjugateness, was intro-
duced in [10] by replacing the Laplace prior of �w with a hierarchical
model, which had similar properties as the Laplace but allowed con-
venient conjugate-exponential analysis [16].

2.1. BCS sparse representation using GSM priors

In the present work, the sparse representation of �w is also performed
in a Bayesian framework. However, in contrast to previous meth-

1In probability theory, a family of prior probability distributions p(s) is
said to be conjugate to a family of likelihood functions p(x|s) if the resulting
posterior distribution p(s|x) is in the same family as p(s).

ods, the proposed method consists in modeling directly the prior of
�w with a heavy-tailed distribution, which promotes its sparsity. For
this purpose, we approximate the prior distribution of �w by means
of a Gaussian Scale Mixture (GSM). This means that �w can be writ-
ten in the form �w =

√
A �G, where A is a positive random variable

and �G = (G1, G2, . . . , GN ) is a zero-mean Gaussian random vec-
tor, independent of A, with covariance matrix Σ. The additional
assumption that the components of �G are independent yields a diag-
onal covariance matrixΣ = diag(σ2

1 , . . . σ2
N ).

From the above, the density of �w conditioned on the variable A
is a zero-mean multivariate Gaussian given by,

p(�w|A) =
exp(− 1

2
�wT (AΣ)−1 �w)

(2π)N/2|AΣ|1/2
, (3)

where | · | denotes the determinant of a matrix. From (3), we obtain
the following simple expression for the maximum likelihood (ML)
estimate of the variable A,

Â(�w) =
(
�wT Σ−1 �w

)
/N . (4)

Assuming that the noise variance σ2
η , the value of A and the covari-

ance matrix Σ have been estimated, given the CS measurements �g
and the matrixΦ, the posterior of �w is given by the Bayes’ rule,

p(�w|�g, A,Σ, σ2
η) =

p(�g|�w, σ2
η)p(�w|A,Σ)

p(�g|A,Σ, σ2
η)

, (5)

which is a multivariate Gaussian distribution whose mean �μ and co-
variance P are given by,

�μ = σ−2
η PΦT�g , (6)

P = (σ−2
η ΦT Φ + M)−1 , (7)

where M = diag((Aσ2
1)−1, . . . , (Aσ2

N )−1). The estimated vec-
tor �w is equal to the most probable value of the above multivariate
Gaussian model, that is, �w ≡ �μ.

The critical advantage offered by a Bayesian CS method, when
compared with the constrained-based optimization approaches in the
processing of medical images is that it ts better the true heavy-tailed
statistics of the sparse vector �w. The use of the GSM model could
enhance the (sparse) representation performance, since it provides
an additional degree of freedom through the scale parameter A, and
thus it results in a more accurate modeling of the true sparsity of the
original image in the (wavelet) transform domain.

The sparse representation of the wavelet coef cient vector �w re-
duces to estimating the model parameters A,Σ, σ2

η . The unknown
parameters σ2

η , {σ2
i }N

i=1 can be estimated iteratively by maximizing
the following marginal log-likelihood function with respect to them:

L(σ2
η, {σ−2

i }N
i=1) = log[p(�g|A, σ2

η, {σ−2
i }N

i=1)]

= −1

2

[
M log(2π) + log(|C|) + �gT C−1�g

]
, (8)

where C =
σ2

η

A
I + ΦΣ−1ΦT . As it can be seen, the proposed

model is a scaled version of the previous hierarchical model by a
factor of 1/A. This factor is important, since it controls the heavy-
tailed behavior of the diagonal elements of M and consequently of
the covariance matrix P, and thus the sparsity of the estimated vec-
tor �w ≡ �μ. A fast incremental algorithm is used for the addition and
deletion of candidate basis functions (columns of Φ) to monotoni-
cally increase the marginal likelihood (8), by noting that the marginal
log-likelihood can be decomposed in two terms,

L(σ2
η, {σ−2

i }N
i=1) = L(σ2

η, {σ−2
i }N

i=1,i�=i′) + l(σ−2
i′ ) , (9)
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Algorithm 1 Estimation of a sparse vector �w via BCS-GSM
Input: Φ, �g, c ∼ 10−3

Output: �̂w ≡ �μ, P, σ2
η ,B {the set of signi cant basis functions}

Initialize:
σ2

η = c · V ar(�g), select basis vector �φ·,i1 (i1-th column ofΦ) s.t.
i1 = arg max

i=1,...,N

‖�φ·,i‖2(
‖�φT

·,i�g‖2/‖�φ·,i‖2
)
−σ2

η

,

set σ−2
i1

=
‖�φ·,i1‖2(

‖�φT
·,i1�g‖2/‖�φ·,i1‖2

)
−σ2

η

(all other {σ−2
i }i�=i1 are set to

in nity),B = {i1}
1: Compute P (Eq. (7)), �μ (Eq. (6)) (initially scalars) and estimate

A from Eq.(4)
2: repeat
3: for i = 1, . . . , N do
4: Compute ξi = q2

i − si

5: if ξi > 0 and σ−2
i < ∞ then

6: re-estimate σ−2
i

7: else if ξi > 0 and σ−2
i = ∞ then

8: add i-th basis in the model (B ← B ∪ {i}) and
update σ−2

i

9: else if ξi ≤ 0 and σ−2
i < ∞ then

10: delete i-th basis from the model (B ← B \ {i})
and set σ−2

i = ∞
11: end if
12: Update P, �μ and A (in this order)
13: Update σ2

η = ‖�g−Φ�μ‖2

N−card(B)+
∑

n∈B A−1σ−2
n Pnn

{card

denotes the cardinality of a set}
14: UpdateD by performing the scaling A σ2

i

15: end for
16: until convergence

with the rst term depending on all except for the i′-th variance,
while the second term depends only on the i′-th variance. The it-
erative scheme for the estimation of the weight vector �w proceeds
as shown by Algorithm 1, where the following notation is used:
si = �φT

·,iC
−1
−i

�φ·,i and qi = �φT
·,iC

−1
−i�g, where C−i is C with the

contribution of the i-th basis vector ignored.
Several convergence criteria can be employed to terminate the

execution of the algorithm, such as when the number of iterations
exceeds a prede ned maximum or when the relative decrease of the
marginal log-likelihood function from one iteration to the next one
falls below a small positive threshold. In our implementation we
adopt the second approach, since it results in an increased recon-
struction performance, while the rst one could be used to reduce
the computational cost.

3. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of BCS-GSM by ap-
plying it on a set of six medical images of size 128 × 128, which
are shown in Figure 1. Each image is sparsi ed in the 2-D DWT
domain by decomposing them in 5 scales using the Daubechies’
“db 4” wavelet. The detail wavelet coef cients represent the high-
frequency content of a given image and they are characterized by a
highly sparse behavior, whereas the approximation coef cients cor-
respond to a coarse representation of it. Thus, the CS algorithms
are applied on the detail coef cients only and the reconstruction of
the original image is performed by adding the approximation coef-
cients to the reconstructed image obtained from the detail coef -
cients. Except for the original (noiseless) images we generate two

noisy versions of them by adding zero-mean Gaussian noise result-
ing in SNR = 7.5, 15 dB.

In the subsequent experiments we apply several CS algorithms
using a portion of the detail coef cients. In particular, ifNdetail is the
number of the detail coef cients we evaluate the performance using a
subset of size c·Ndetail with c ∈ {0.3, 0.4, 0.5, 0.65} (or equivalently
by employing 30%, 40%, 50% and 65% of the detail coef cients).
The proposed BCS-GSM method is compared with the following
CS techniques: 1) standard BCS, 2) BP, 3) StOMP (combined with
a CFAR thresholding scheme), 4) �1-norm minimization using the
primal-dual interior point method (L1EQ-PD) and 5) the linear re-
construction, which is simply the inverse 2-D DWT and gives the
optimal reconstruction2.

The CS measurements �g are acquired by applying measurement
matrices Φ with their columns being drawn randomly from the unit
sphere on the wavelet coef cients vector �w. The quality of the re-
constructed image (of size P × Q) is measured via the Peak Signal-
to-Noise Ratio (PSNR), which is de ned as follows (in dB):

PSNR = 20 log10

(
max{I}√

1
PQ

∑P
p=1

∑Q
q=1 |I(p, q) − Î(p, q)|2

)
,

(10)
where I and Î denote the original and reconstructed image, respec-
tively, max{I} is the maximum pixel value of image I and I(p, q)
is the pixel value at the position (p, q). Due to space limitations, we
plot the results for the images of the top row only. However, similar
performance is achieved for the other three images.

Aneu3 CerebralAngio Cisternogram

CoronaryAngio CTA CTMyeloL1

Fig. 1. Medical images (128 × 128) used for evaluation of the per-
formance of BCS-GSM.

Fig. 2 shows the PSNRs between the reconstructed (noiseless
and noisy) images and the corresponding original (noiseless) image,
for the BCS-GSM, as well as for the other ve reconstruction ap-
proaches, as a function of the number of measurements for the two
SNR values. First, we observe that for the selected images the re-
construction performance of all methods decreases as the SNR de-
creases, something that we expected. However, it is clear that the
proposed BCS-GSM method achieves practically the same PSNR
with the selected CS methods and the optimal linear reconstruction.
In particular, the difference in PSNR with the linear reconstruction
is less than 1 dB in the noiseless case, while it is negligible in the
two noisy cases. Besides, the increased number of measurements

2For the implementation of the other CS methods we used the code
included in the SparseLab package that is available online at http://
sparselab.stanford.edu/.
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Fig. 2. PSNRs for “Aneu3”, “CerebralAngio” and “Cisternogram”
as a function ofM and for SNR = 7.5, 15 dB.

in the selected range M ∈ [1900, 4200] does not affect the recon-
struction PSNR as much as one would expect. A justi cation for
this behavior is that all of the selected images consist of lines and
edges spread over a relatively homogeneous background resulting
in highly sparse coef cient vector. Thus, a small number of mea-
surements is adequate in capturing the sparsity, while the addition of
more measurements above a threshold improves the reconstruction
quality only slightly.

The increased ability of BCS-GSM to provide a highly sparse
representation in the case of medical images is highlighted in Fig. 3
depicting the corresponding CS ratio values, which we de ne as the
ratio of the number of measurementsM over the number of non-zero
components of �w (sparsity) returned by the algorithm. The larger the
CS ratio value, the higher the sparsity for a xed value of M . Ob-
viously, BCS-GSM outperforms all the other CS methods, increas-
ing the sparsity of the representation by as much as 15 times as the
number of measurements increases. In addition, this signi cantly
improved performance is robust even in the low-SNR regime.

4. CONCLUSIONS AND FUTUREWORK

In this work, we described a probabilistic method for CS sparse rep-
resentation of medical images using a GSM, which models directly
the sparse coef cient vector with a heavy-tailed distribution that en-
forces its sparsity. The experimental results revealed a critical prop-
erty of the proposed BCS-GSM approach when compared with other
CS reconstruction methods. In particular, we showed that the BCS-
GSM implementation maintains comparable reconstruction perfor-
mance, while using much fewer basis functions and thus, resulting
in an increased sparsity. The subject of our ongoing research is to
apply the increased sparsity for classi cation and retrieval purposes
reducing the storage requirements and the computational cost.
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