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Abstract

Near Infra-Red (NIR) images of natural scenes usually
have better contrast and contain rich texture details that
may not be perceived in visible light photographs (VIS). In
this paper, we propose a novel method to enhance a pho-
tograph by using the contrast and texture information of
its corresponding NIR image. More precisely, we first de-
compose the NIR/VIS pair into average and detail wavelet
subbands. We then transfer the contrast in the average sub-
band and transfer texture in the detail subbands. We built a
special camera mount that optically aligns two consumer-
grade digital cameras, one of which was modified to cap-
ture NIR. Our results exhibit higher visual quality than tone-
mapped HDR images, showing that NIR imaging is useful
for computational photography.

1. Introduction

The radiance from natural scenes usually spans a very
wide dynamic range, far exceeding what a digital camera
can capture. For instance, in a sunny outdoor environment,
the dynamic range could reach as high as 10°. In contrast, a
professional-grade digital camera that uses 14 bits per chan-
nel can capture a range of only 10%. Consumer-grade cam-
eras are even worse. One common technique around this
problem is to first compute an high dynamic range (HDR)
image, usually from multiple shots of varying exposures,
and then to map this into a lower dynamic range (LDR)
image suitable for display devices. However, such a tone-
mapping procedure does not usually produce a perceptually
pleasing result. Usually, pixels end up becoming too bright
or too dark, and rich scene information such as color and
texture are almost completely lost. Fig. 1(a) shows a typical
photo taken under an HDR environment, where the footpath
is very bright but the region inside the building can barely
be seen.

Recently, many methods have been proposed to recover
HDR radiance map and convert it to LDR images. Debevec
and Malik presented a way to recover HDR radiance from
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multiply exposed photographs [4]. Mapping HDR to LDR,
also known as tone mapping, can be roughly divided into
two categories: spatially uniform mapping and spatially
varying mapping. For instance, Reinhard et al. used a spa-
tially uniform operator to compress dynamic range globally
and then manipulated contrast locally based on luminance
values [13]. A review of tone mapping techniques can be
found in [5]. From HDR photos, it is possible to retrieve
all details and color correctly. But obtaining an HDR map
requires multiple images captured with different exposures.
This in turn requires the scene to be static, which greatly
limits its applicability.

Another class of techniques involves modifying the
imaging sensor. For example, Nayar and Branzoi [10] use
an LCD panel to modulate the light falling onto the sensor,
while Nayar et al. [11] use a digital micromirror array for
the same purpose. The goal is to adaptively control the ex-
posure of small groups of pixel according to the radiance
falling on them.

Another possible solution, widely used by professional
photographers, is to take photos in RAW format and manu-
ally adjust contrast region by region. Usually RAW pictures
use 12 or 14 bits per channel to record scene radiance, thus
resulting in a higher dynamic range than normal JPEG pho-
tos. Such manual adjustment is tedious and requires expe-
rience, and the dynamic range of RAW format is still quite
limited.

In contrast, our method uses Near Infrared (NIR) light.
This lies between visible red light and Long Infra-Red (LIR)
light in the electromagnetic spectrum. NIR light has wave-
length in the range 750 — 1400 nm, which is longer than
visible light (380 — 750 nm). Human eyes can not see NIR
light but most digital cameras can sense it very well. For
example, some models of SONY digital cameras or cam-
corders have a Night Shot mode which increases cameras
visual range by letting the sensor acquire more NIR light.
However, most manufacturers insert an IR cutoff filter over
the camera sensor to filter out NIR light, to avoid some un-
wanted artifacts. In fact, NIR images usually have better
brightness contrast and provide rich texture details, as seen



(a) Visible Image

(b) Near Infrared Image

(c) Our Enhanced Result

Figure 1. We proposed a novel image enhancement method by transferring contrast and texture from near infrared image to visible image.
Fig. 1(a) and Fig. 1(b) are an improper exposed photo taken under high dynamic range environment and its corresponding near infrared
photo. With only these two input images, our approach can adaptively and automatically adjust contrast and enrich visible details in over-

or under-exposed areas, as shown in Fig. 1(c).

in Fig. 1(a) and 1(b). The details of trees and leaves are
barely seen in the visible image, but look clear and sharp in
the NIR image. We exploit this fact in our work.

Inspired by the camera’s ability to record NIR light and
by recent works on tonal transfer [2, 12], we propose a novel
method that can adjust a photograph’s contrast adaptively
and enrich texture details fully automatically with just one
shot (i.e. one VIS/NIR image pair). NIR photography is not
new; it is commonly appreciated for its artistic value [8], but
has not been fully exploited in computational photography.
Morris et al. observed that the wavelet coefficients of long
infrared (LIR) natural images closely follows the Laplacian
distribution [9]. Encouraged by their work, we build a dual-
camera system that can capture visible photo and NIR photo
of the same scene simultaneously, and find that NIR images
also have similar statistical properties. Moreover, we no-
tice that NIR images of natural scenes usually exhibit lower
dynamic range and contain rich texture details. In terms of
transfer techniques, the Neumann brothers showed how to
transfer color style from a source image to an arbitrary tar-
get image by applying histogram matching [12]. Similarly,
Bae et al. also presented a method to transfer tonal quality
from one image to another, using histogram matching and
bilateral filter [2]. In the light of their work, we propose an
original way of using NIR information to enhance visible
photographs. Given as input one VIS image and its cor-
responding NIR image, our approach can adaptively detect
unsatisfactory pixels in the VIS image, and transfer contrast
information and high frequency texture from its NIR coun-
terpart. We use histogram matching in the gradient domain
to transfer contrast and use wavelet coefficients to transfer
texture information. We were able to achieve very pleasing
results (see Fig.1).

The highlights of our work include:

e A novel method that uses NIR information to adjust
the contrast of photographs adaptively, and to enrich

texture details automatically with one single shot.

e A threshold-free method to detect regions that require
enhancement.

e A study of the statistical properties of NIR images of
natural scenes.

As far as we can tell, we are the first to use NIR for photo-
graph enhancement.

2. Near Infrared Imaging
2.1. Dual-camera system

NIR light lies adjacent to visible red light in the electro-
magnetic spectrum, and has longer wavelength than visible
light. NIR is not visible to human eyes, but can be recorded
by CCD or CMOS sensors. However, most manufacturers
of digital cameras install an IR cutoff filter over the sensor
to suppress infrared light and avoid unwanted artifacts.

To capture both visible and NIR pictures for the same
scene simultaneously, we built a dual-camera system which
comprises two Sony F828 digital cameras and one hot mir-
ror. A hot mirror is a specialized dielectric mirror which
can reflect NIR light when incident light arrives at a cer-
tain angle. We used a 45° hot mirror, meaning it can reflect
NIR light with angle of incidence of 45° but does not block
visible light. Fig. 2(a) illustrates how our system works. Al-
though the Sony F828 has built-in Night Shot mode which
can temporarily move the IR cutoff filter away to allow NIR
imaging, Sony has intentionally limited such NIR imaging
to only allow long exposure times. Our modified camera
does not suffer from this limitation. We also modified the
remote control of the camera so that it can trigger two cam-
eras at the same time. We have carefully setup two cameras
to ensure that they are optically aligned. They also share
the same camera settings, such as focal length and aperture
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Figure 2. (a): Our VIS-NIR dual-camera prototype. Camera V and N are optically aligned and connected to the same remote control,
allowing a VIS/NIR image pair of the same scene to be captured with a single shot. (b-c): Statistical properties of NIR images. (b) shows
distribution of gradient magnitude, similar to statistics of visible images [7]. (c) shows distribution of H wavelet subband of Haar transform,
similar to statistics of IR images [9]. Subbands V and D have similar distribution.

size, to guarantee the geometric alignment of the image pair.
Currently, we do not force the two cameras to use the same
shutter speed, because digital cameras are designed to be
less sensitive to NIR thus requiring a slightly longer expo-
sure.

The NIR picture captured in this way is actually an RGB
color image and looks reddish since NIR light is just adja-
cent to red light. However, because of the filters we use, the
NIR light we capture is almost monochromatic and should
not contain any color information. So we use only intensity
information by converting to HSV color space and using V’
channel. Fig.1(a) and Fig. 1(b) show an example image pair
captured by our dual-camera system. Our prototype hard-
ware may look bulky, but this can be miniaturized. Our goal
is to show the usefulness of NIR images.

2.2. Statistics of NIR images

Huang and Mumford [7] have shown that the gradient
histograms of natural images follow a generalized Laplace
distribution which can be expressed as Eq. 1:

P(z) =k-e lo/s1%, (1)
Recently, Morris et al. [9] found wavelet coefficients of LIR
(wavelength lies in 4000 — 120000 nm) images of natural
scenes can also be well fitted with a Laplacian curve. In
this paper, we show that NIR natural images share simi-
lar statistical properties, as illustrated in Fig. 2. We collect
a total of 220 NIR photos for statistical analysis. Some of
them are collected from web and others are captured by our-
selves, mostly covering subjects of natural scene and peo-
ple. Similar to [7, 9], we use gradient magnitude and the
Haar wavelet coefficients. We calculate the histograms of
all images for both gradient magnitude and wavelet coeffi-
cients in horizontal (H), vertical (V) and diagonal (D) direc-
tions. All these histograms are calculated on logarithm of
the actual values and normalized based on image pixels. In
Fig. 2, all gray lines denote the actual histograms, the blue

lines show the average histogram distribution, and the red
dash lines show the fitted Laplacian curve (Eq. 1). We can
see that the fit is good, meaning that NIR images have sim-
ilar statistical properties as visible and LIR images (Please
refer details to [7, 9]). In Sec.3.2.2 we will show how we
can use these statistical properties to guide the enhancement
process.

3. Visible Image Enhancement

The workflow of our approach is illustrated in Fig. 3.
There are three main steps: computing the weighted region
mask, transferring contrast and transferring texture. The de-
tails are explained in Sec. 3.1, Sec. 3.2 and Sec. 3.3 respec-
tively. Note that all inputs are the logarithm of original im-
age values as we mentioned in the previous section.

3.1. Computing the weighted region mask

Intuitively, regions that suffer a loss of details are typi-
cally too bright or too dark, and have low saturation. From
this observation, a weighted mask can be calculated based
on saturation and brightness value. Let W, and W,, denote
weighted mask of saturation and brightness, W denote the
final weighted region mask indicating areas to be enhanced.
Then W can be obtained using following equations:
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where s and v are the saturation and brightness intensity,
and p;s and p, denote the probability that s and v appear
in visible image respectively. ps and p, can be easily ob-
tained from the normalized histograms of channels S and V.
The meaning of p, and p, is that the pixels to be enhanced
should distribute over large areas, rather than in small re-
gions. Enhancing large areas while ignoring small regions
usually achieves better perceptual quality.
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Figure 3. The workflow of our approach. The enhancement process uses the Haar wavelet decomposition, and comprises three major steps:
computing the weighted region mask, transferring contrast, and transferring texture. See text for details.
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Figure 4. Weighted region mask computation. The second row
shows the histograms of saturation and brightness channel (gray
regions). The red and blue lines illustrate the weights computed
according to Eq. 2. The curves are smoothed for reducing noise.
The sky and cloud have high brightness and relatively low satura-
tion, and thus have higher weights; vice versa for the tree tops.

Note that W is calculated adaptively and fully automat-
ically, not requiring any thresholds. The weighted region
mask is used as a mask for brightness and texture transfer
later. Fig. 4 shows what our weighted region mask looks
like and how it is generated. A higher value in W means
more information will be transferred from NIR image, and
vice versa. To reduce noise, a Gaussian blurring is first ap-
plied on W.

3.2. Transferring contrast

Our contrast transfer method is based on histogram
matching and gradient techniques. Bae ef al. also applied
histogram matching to transfer photograph tonality [2]. In-
stead of matching histogram in the intensity domain as they

did, we show that histogram matching in the gradient mag-
nitude can achieve better and reliable results.

3.2.1 Histogram matching

The histogram matching problem can be simply defined as:
given an image I and a target histogram (pdf) h(z), the
problem is to find a new image J by transforming I, so
as to make histogram of .J be as same as h. The problem
can be solved by using the cumulative distribution function
(CDF), f. Define f(z) = [ h(z)dz, where x is image in-
tensity. Let I;; and J;; denote each pixel intensity in I and
J. Then the desired image J can be obtained using Eq. 3,
and the detailed proof can be found in [6].

Jij = [7 (f1(Li) 3

3.2.2 Large-Scale contrast transfer

The brightness contrast of a visible image is affected by en-
vironment illumination, as well as object shape and texture
in the scene. Therefore, the brightness map of an image
should change smoothly while preserving major features
such as strong edges. To achieve a smooth brightness map
of visible image V' and NIR image N (V and N are ac-
tually the average subbands in the Haar decomposition, as
shown in Fig. 3), we apply bilateral filtering [14] to decom-
pose images to large-scale layer and detail layer, and use the
larger-scale layer as brightness map, as in Eq. 4:

Vi =bf(V), Vo=V -V,

N, =bf(N), Np = N — Ny. @

Vi and Np, are large-scale layers, and Vp, Np are corre-
sponding detail layers (after taking the logarithm). We use
a similar definition for the bilateral filter function bf and
parameter selection as in Bae et al.’s work.

We implement three different methods to transfer con-
trast from the NIR image to the VIS image. A comparison
of their results can found in Fig. 5 and 6.



Method 1: Histogram Matching Inspired by Bae et al.’s
method [2], we can simply match intensity histogram
of Vi, with Ny, to transfer intensity distribution. This
method is easy and efficient, but histogram matching
blindly alters pixel values and thus very possibly de-
stroy illumination consistency. From Fig. 5, we see
that histogram matching does improve the contrast sig-
nificantly. However, we also see that pixels in the tree
bark are over brightened and inconsistent with the il-
lumination in the original image. After applying the
gradient constraint, the result looks more natural.

Method 2: Histogram Matching with Gradient Constraint

To maintain illumination consistency, we can check
the gradient direction of the altered brightness map
pixel by pixel. Once we find the gradient direction
that is reversed or changed too much from the original
brightness map, we force them to be zero. After
applying the gradient constraint, the enhanced result
looks more natural compared with method 1 (see
Fig. 5). But in some cases, where gradients change
abruptly along their original directions due to the
histogram matching step, this constraint will fail,
as shown in Fig. 6. The gradient constraint cannot
remove the banding-effect on the pillar and wall,
because the gradients in those areas are not actually
reversed.

Method 3: Gradient Magnitude Matching To  strictly
maintain smoothness of the transferred brightness
map, we match the histogram of brightness gradient
magnitude instead of brightness intensity. We define
Ve and N¢ as the gradient magnitude of V, and Ny :
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In Sec. 2.2 we have shown that gradient magnitude his-
togram of NIR image can be well fitted with a general-
ized Laplacian curve. Because Ny, is a smoothed ver-
sion of the NIR image, its gradient magnitude N¢ also
has same statistical property. Let [ denote the Lapla-
cian curve that can fit histogram of Ng. Instead of
matching histogram of Vi with histogram of N¢ di-
rectly, we use [ as the target histogram to produce a
smoother and noise-free distribution transfer. In this
case, the functions fr and f in Eq. 3 are the CDFs of
[. Let Vg denote the histogram matching result, we
can easily compute new gradients by scaling V¢, and
Ve, along their original directions respectively:

Vo = JV&, + V3, =/ (5, ) + (5, )
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Figure 5. Comparison of histogram matching (method 1) with his-
togram matching with gradient constraint (method 2). The result
of histogram matching (Fig. 5(c)) looks artificial because it breaks
the consistency of overall brightness distribution. After applying
gradient constraints, Fig. 5(d) looks more natural.

From Vg and VG% , We reconstruct new large-scale
brightness map V. by using Agrawal et al.’s improved
Poisson solver [1]. The final contrast transferred V' is
obtained by blending enhanced brightness map and its
original version V together using alpha-blending

Vi=W- - (Ve +Vp)+ 1 -W)-V, 7

where the weighted map W is used as the alpha chan-
nel and |-| denotes pixel-wise multiplication. This
method naturally maintains illumination consistency
and achieves the best result among these three meth-
ods. See Fig.6 for comparison. Note that the banding-
effects of methods 1 and 2 are completely suppressed,
while overall contrast has been improved.

3.3. Transferring texture

As we state in our workflow (Fig.3), after applying Haar
wavelet transformation, the wavelet subbands in horizon-
tal, vertical, and diagonal directions actually contain rich
texture information. To transfer those details, we use al-
pha blending again to combine corresponding subbands to-
gether:

VH =W -NH+(1-W)-VH. ®)
V'V’ and VD' are obtained similarly. The new subbands
VH', VV', and VD' not only inherit texture details from
the VIS image, but are also enhanced by rich high frequency
details from NIR image. Fig. 7(g) show the result with high
frequency details transferred. The textures on the roof in the
original image are almost lost completely. By transferring
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Figure 6. Comparison of Methods 1, 2, and 3. Note that the band-
effects (regions in red box) due to blind histogram matching have
been successfully suppressed by our guided histogram matching
of gradient magnitude. The result of Method 3 achieves the least
artifacts and best perceptual quality.

high frequency details from NIR to visible image, those lost
textures are successfully recovered, and those weak textures
are also reinforced greatly. Finally, we apply inverse Haar
wavelet transform to enhance the V channel.

4. Experiments and Results

A common HDR scene is the natural outdoor environ-
ment under bright sunlight. To demonstrate the strength of
our techniques, we test our approach with pictures taken in
such HDR situations. All input visible and NIR image pairs
have been geometrically aligned. In outdoor daylight, tree
leaves and some objects, such as cloth and skin, reflect NIR
light strongly, so they look bright and have much details
even in shaded areas (see Fig. 1, 8, and 9). Such features in
NIR images are useful for enhancing visible images.

We also find that contrast transfer and texture transfer
are both equally important for enhancement. As shown in
Fig. 7: Fig. 7(e) is the enhanced result with only texture
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Figure 7. Comparison of results with either contrast transfer or
texture transfer. Fig. 7(c-g) show the zoomed-in roof details.



transferred, where most of roof details are successfully re-
covered but the picture still looks over-exposed; Fig. 7(f) is
the result with only contrast transferred, which has lower
contrast but roof details are still lost. Obviously, after trans-
ferring the contrast and texture, Fig. 7(g) exhibits better vi-
sual quality.

To show that histogram matching of gradient magni-
tude (Method 3) can preserve overall illumination map and
achieve higher perceptual quality, we compare of our results
with a naively blended output (see Fig. 8(d) and Fig. 9(d)).
This trivial result is obtained using alpha-blending of V" and
N based on the weighted region mask W, i.e. using each
pixel value in W as alpha value.

We also compare our results with tone-mapped HDR im-
ages of same scenes, as shown in Fig. 8(h) and Fig. 9(e). To
get the HDR image, we take multiple images with different
exposure (usually 5-7 pictures with exposure difference of 1
stop), and assemble them using the HDR Shop software de-
veloped by Debevec [3]. We recovered the camera response
curve of our camera to generate HDR image more precisely,
and we applied Reinhard et al.’s algorithm for tone mapping
[13]. Tone-mapped HDR images are supposed to produce a
range-compressed image with rich details and high visible
quality. However, tone mapping algorithms usually have a
strict assumption that the scene must be static, i.e. no mov-
ing objects throughout the whole image sequence. Such an
assumption is easily broken in outdoor scenes, as shown in
Fig. 8(h). The walking pedestrian and leaves waving in the
wind cause serious “ghosting effect” (shown in red boxes)
in the tone mapped results. Because the inputs of our ap-
proach are captured in a single shot, our results are free of
such artifacts. Besides, our approach preserves consistency
of overall illumination distribution while recovering scene
details, therefore our results gain better perceptual quality
on brightness contrast than tone-mapped results, as shown
in Fig. 8(h) and Fig. 9(e).

5. Conclusions and Discussions

In this paper, we presented an approach of enhancing
visible photograph using NIR information based on a dual-
camera prototype. Without manual segmentation or inter-
action, our method can calculate the enhancing weight for
each pixel automatically and transfer brightness and texture
details from the NIR image to the visible image. We show
that our histogram matching of gradient magnitude can well
maintain large-scale illumination and achieve better percep-
tual quality. Also, by combining the wavelet H, V, and D
subbands of NIR and visible image high frequency details
are effectively enhanced.

Since common digital cameras are capable of recording
NIR light, ours is a practical method to enhance LDR im-
ages. Compared with tone mapping an HDR image, our
method requires only one shot (i.e. one VIS/NIR image

pair). Benefiting from the better contrast in the NIR images
and a spatially varying weighted mask, our method can pro-
duce results that are aesthetically more pleasing than tone-
mapped methods.

As far as we can tell from searching the published lit-
erature, we are the first to make use of NIR information
for photograph enhancement. We believe that the unique
property of NIR light has great potential for computational
photography. Photography in low light condition may also
benefit from NIR imaging, because in low visible light situ-
ation there could still be sufficient NIR light and objects that
strongly reflect NIR can be captured. In the near future, we
hope to investigate how NIR images can be used to guide
HDR tone-mapping.
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Figure 8. Comparison of our approach with alpha-blending and HDR tone mapping. The naive alpha-blending result appears bad, since
simple pixel-wise blending cannot transfer overall contrast. As for HDR tone mapping, the result exhibits “ghosting effect” (shown in red

boxes) because objects have moved during the capture of multiple exposures.

(a) Visible Image (b) NIR Image (c) Weighted Region Map

(d) Alpha-blending (e) HDR Tone Mapping (f) Our Result (Method 3)

Figure 9. Another comparison of our approach with alpha-blending and HDR tone mapping. Our method successfully enhances brightness
and texture by using NIR information.



