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Abstract

The appearance of a distant object, when viewed
through a telephoto-lens, is often deformed nonuni-
formly by the influence of hot-air optical turbulence.
The deformation is unsteady: an image sequence can
include nonuniform movement of the object even if a
stationary camera is used for a static object. This study
proposes a multi-frame super-resolution reconstruction
from such an image sequence. The process consists of
the following three stages. In the first stage, an im-
age frame without deformation is estimated from the
sequence. However, there is little detailed information
about the object. In the second stage, each frame in the
sequence is aligned non-rigidly to the estimated image
using a non-rigid deformation model. A stable non-
rigid registration technique with a B-spline function is
also proposed in this study for dealing with a texture-
less region. In the third stage, a multi-frame super-
resolution reconstruction using the non-rigid deforma-
tion recovers the detailed information in the frame
obtained in the first stage. Experiments using syn-
thetic images demonstrate the accuracy and stability of
the proposed non-rigid registration technique. Further-
more, experiments using real sequences underscore the
effectiveness of the proposed process.

1. Introduction

The refraction index of air depends on the ambi-
ent air pressure, temperature, humidity, carbon dioxide
level, and air dust density. Moreover, the condition of
air in the atmosphere is not homogeneous. An increase
in temperature at a land surface which receives direct
sunlight causes a nonuniform temperature distribution
above the surface. The temperature distribution then
generates air convection, which makes the distribution
unsteady.

Refraction of light occurs on a border of two mate-
rials. Light travels on a curved line in a medium-like
air, which changes its relative refraction index nonuni-

formly and continuously. The atmosphere moves by
convection or wind, which changes the curved line
along with the movement of the air. The hot-air optical
turbulence, a so-called heat devil, is derived from such
air nonuniformity and movement. A static object is de-
formed in an observed image by the optical turbulence,
even if it is taken by a stationary camera. Moreover,
the deformation is not constant for the image position
and time; the real appearance of the object will never
be observed.

Figure 1 shows example images taken under the in-
fluence of optical turbulence 1 . The images are close-
up images of a sequence in 0.2 seconds interval for a far
distant object taken through a telephoto-lens. Every
image includes nonuniform deformations, which vary
by time.

The real appearance of the object must be estimated
from such observations. However, from another per-
spective, the movement can be considered as an obser-
vation of the slightly different position of the object.
This allows enhancement of the image resolution us-
ing multi-frame super-resolution reconstruction, even
if a stationary camera is used for a static object. The
reconstruction process requires an accurate and stable
non-rigid image registration technique.

Non-rigid image registration has been studied widely
in medical-image processing [2],[5],[6] to align images
taken at different times. In the non-rigid deformation
model, the image to be aligned is deformed by chang-
ing the positions of the control points placed on the
image. A positional interpolation for the deformed im-
age requires a basis function for obtaining smoothly
changing positions between the control points. The
thin-plate spline (TPS) function [2] and the B-spline
function [7] have been used for the basis function. The
number of deformation parameters for these basis func-
tions depends on the degree of deformation to align the
image.

The deformation model with the TPS basis function
1Image degradations by a “bad” weather condition are com-

prehensively studied in [11]. Our approach utilizes another as-
pect of meteoric phenomena.
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Figure 1. Several frames from a sequence for a far distant
object taken through a telephoto lens.

has no restriction of the control point placement. The
model also has a characteristic by which the displace-
ment of a deformation at an interest point in an image
tracks perfectly to the control point position. These
characteristics enable the TPS basis function to be used
in a feature-based non-rigid registration. However, it is
generally difficult to obtain a sufficient number of cor-
responding feature points with satisfactory accuracy
to align images in sub-pixel accuracy. For this issue, a
method to improve the registration accuracy has been
proposed using correspondence between curves [1]. A
parameter estimation method for the TPS basis func-
tion by an area-based registration has also been pro-
posed [8].

On the other hand, the non-rigid deformation model
with the B-spline basis function [12] has less compu-
tational cost in transforming the image position than
the other basis functions. This advantage enables the
use of an area-based registration technique [5],[6] to
align images with sub-pixel accuracy. However, the ex-
isting estimation methods of numerous parameters for
the non-rigid deformation model become unsteady for
a textureless or noisy region. In relation to this issue,
a method to increase the parameter numbers by esti-
mating the deformation [13] and a method to learn the

basis of the non-rigid deformation [9] have been pro-
posed.

This study proposes a multi-frame super-resolution
reconstruction from an image sequence under influence
of optical turbulence. This paper is organized as fol-
lows. Section 2 describes a method to estimate an im-
age without deformation after investigating the charac-
teristics of the nonuniform movement in the sequence
under influence of optical turbulence. Section 3 pro-
poses a stable non-rigid registration technique with the
B-spline function, after representing the B-spline non-
rigid motion model. A multi-frame super-resolution
using the non-rigid model to estimate the detailed in-
formation is also described. Section 4 presents exper-
iments using synthetic images to investigate the accu-
racy and stability of the proposed non-rigid registra-
tion technique. Experiments using real sequences are
also presented. This paper concludes with remarks in
Section 5.

2. Object Appearance Estimation

2.1. Characteristics of the Deformation Movement

Image deformation in the observed frame arises from
a global motion and a local motion. The global motion
is caused by the camera movement or object motion;
it is representable by a translational or affine motion
model. The local motion is a residual motion after
compensating the global motion of the frame. It is
representable by a non-rigid motion model.

A sequence taken using a hand-held camera includes
global motion in many cases. Some sequences taken
using a stationary camera with a telephoto lens also
include global motion resulting from wind or earth
tremors. The global motion can be removed from the
sequence by compensating the estimated global motion
for each frame to a reference frame. The global motion
is obtainable using a common registration technique
with a translational or affine motion model for a suf-
ficiently large region of interest in the frame. The es-
timated global motion here includes an error because
the two frames are not perfectly identical; both frames
involve different deformation according to the local mo-
tion.

Figure 2 depicts the local translational motion,
which is the tracking result for the rear tire of the sil-
ver car in Fig. 1, throughout the 900 frames in the
sequence, after the global motion compensation. The
figure also portrays a histogram of the horizontal and
vertical components of the motion, with their Gaus-
sian fitted curves. The histogram of the local motion
can be approximated as a two-dimensional zero-mean
Gaussian.

The local motion is a symmetrical distribution cen-
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Figure 2. Deformation movement after removing the global
motion.

tered at a position without any motion if the observa-
tion is a sufficiently long period. The standard devia-
tion of the distribution can be estimated from the se-
quence. It depends on the lens focal length, the image
size in pixels, the object distance, and the characteris-
tics of the medium between the lens and the object.

2.2. Averaging the Frames

The object appearance without the local motion can
be estimated by simply averaging the observed frames
in the image sequence.

The averaging operation of the frames without
global motion is equivalent to the Gaussian convolu-
tion of the real object appearance without any motion
if the local motion is a normal distribution with mean
zero and standard deviation σ:

1
N

N∑
k=1

ILk(W(x;pk)) ≈ I(x) ⊗ N(0, σ2), (1)

where ILk(W(x;pk)) denotes the observed k-th frame
in total N frames with the local motion of W(x;pk).
Therein, I(x) represents the real object appearance.
In addition, ⊗ and N(0, σ2) respectively denote the
convolution function and a Gaussian kernel of mean
zero and standard deviation of σ.

Figure 3(b) shows the averaged image obtained from
the sequence shown in Fig. 1; Fig. 3(a) shows a mag-
nified observed image. The averaging operation uses
400 frames after the global motion removal. The oper-
ation eliminates the local motion, but the details in the
observed frames are not visible in the averaged image.

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Observed image

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Averaged image

Figure 3. Frame averaging result.

3. Detail Recovery

This section describes the non-rigid deformation
model with the B-spline basis function and the defor-
mation parameter estimation method between two im-
ages. An objective function with a stabilization term
is proposed for the parameter estimation method.

The B-spline basis function has the following advan-
tages compared to the other basis functions: a smooth
deformation of the image by a shift of a control point,
a locality of the effect extent of a shift, affine trans-
formation operability by movements of a set of control
points, and a low computational complexity.

Furthermore, this section describes the multi-frame
super-resolution reconstruction processing with the es-
timated non-rigid motion. The process recovers details
lost in the averaging operation.

3.1. Non-Rigid Deformation Model

A displacement at an image position is obtain-
able from a weighted average of a set of displace-
ment of control points located on the image using
the B-spline basis function. We designate the vector
p = [ ∆x̂1, · · · , ∆x̂n, ∆ŷ1, · · · , ∆ŷn ]� as the defor-
mation parameters, where the components of the vec-
tor are the horizontal and vertical displacement from
the initial positions of n control points. The deformed
position from original position x = (x, y)� is repre-
sentable as follows when the initial positions are equally
spaced [5]:

W(x;p) = x + A(x)p. (2)



The A(x) denotes the following B-spline basis function
matrix for the position x.

A (x) =
[

c1 · · · cn 0 · · · 0
0 · · · 0 c1 · · · cn

]
, (3)

In that equation, the B-spline basis ci is representable
as follows using the initial positions of the control
points x̂0i = (x̂0i, ŷ0i)

� and the interval between the
control points (hx, hy).

ci = β

(
x − x̂0i

hx

)
β

(
y − ŷ0i

hy

)
(4)

β(t) =




2/3 − (1 − |t|/2)t2 , if 0 ≤ |t| ≤ 1
(2 − |t|)3/6 , if 1 < |t| < 2
0 , otherwise

The B-spline basis ci can be computed in advance
in this case, with the image size and the interval of
the control points. Furthermore, almost all compo-
nents in ci become zero because of the locality of the
effect extent of displacement of a control point. These
enable a lower computational cost for image transfor-
mation than the other basis functions, including the
TPS function.

Figure 4 illustrates a deformation caused by a shift
of a control point. The white and red circles in the fig-
ure denote the control points. The shift of the centered
red circle deforms the image, as illustrated in the right
figure. The effect extent is limited in the green area.

3.2. Parameter Estimation using the Area-Based
method

For the non-rigid motion parameter estimation, a
source image S and a target image T respectively de-
note a reference image and an image to be deformed
with the estimated motion parameter, in this article.

Figure 5 presents a diagram of the area-based pa-
rameter estimation method, which estimates the defor-
mation parameter p by minimizing the error between
the source image S and the target image T deformed
with the parameter p. However, the parameter p be-
comes unstable for a region with little texture because
the error differs little as p changes.

Figure 4. Shift of a control point and its influential area.

The proposed objective function E(p) to be min-
imized includes the stabilization term (the second
term), as

E(p) =
∑
x

|T (W(x;p)) − S(x)|2

+γ
∑
x

∥∥λ(x)−1A(x)p
∥∥2

, (5)

λ(x) = diag
[
∂T (W(x;p))

∂W

]
,

where λ(x) denotes a diagonal matrix that has image
gradients at the point of interest in its diagonal com-
ponents. The γ denotes a weight for the stabilization
term, which can be determined empirically considering
the image contrast. Too small a weight of γ renders
the estimated parameter unstable; too large a weight
makes the parameter stay at its initial value.

The stabilization term is a product of the inverse
of the image gradient and the displacement of pixels.
The term has less effect at a region having a large image
gradient: the deformation parameter p can be large if
the region has a rich texture. On the other hand, the
stabilization term has a considerable effect for a region
having a small gradient: the parameter remains at its
initial value if the region has less texture. The stabi-
lization term enables accurate deformation parameter
estimation with stability of results.

Gauss-Newton method is used to minimize the ob-
jective function E(p). The update of the deformation
parameter is derived as

pl+1 = pl + ∆p = pl − H−1b, (6)

H =
∑
x

g(x)g(x)�,

+γ
∑
x

(
λ(x)−1A(x)

)�
λ(x)−1A(x),

b =
∑
x

g(x)∆I(x),

g(x)� =
∂T (W(x;pl))

∂W
A(x),

∆I(x) = T (W(x;pl)) − S(x),

where l represents an iteration number.

3.3. Super-Resolution Image Reconstruction

An image sequence that is influenced by optical tur-
bulence includes many samples at different positions
of the object as the local motion, even if the sequence
is captured by a stationary camera for a static object.
The local motion allows reconstruction of a higher res-
olution image from several low-resolution observations.
In this section, the multi-frame super-resolution recon-
struction [3],[4] is explained briefly, but the motion in



Figure 5. Area-based deformation parameter estimation.

the observed image differs from the well-known pro-
cessing.

The super-resolution image reconstruction models
the camera observation of a higher resolution or con-
tinuous image, as illustrated in Fig. 6. The observation
is a low-resolution digital image with estimated motion.
The higher resolution image to be estimated is updated
by the error between the real observations and the sim-
ulated observations generated from the camera model.
This process is equivalent to minimizing the following
objective function using an optimization method such
as conjugate gradient method.

f(z) =
M∑

k=1

‖Ik − DFBkz‖2 + α ‖Lz‖2
, (7)

In the equation, z and Bk respectively denote the high-
resolution image and the deformation matrix; F and D
respectively represent a camera imaging model includ-
ing the point spread function of the optics and a down
sampling matrix from the high-resolution image to the
low-resolution observation. Also, Ik and M respec-
tively denote the k-th low-resolution observed image
and the total number of the low-resolution images. In
addition, L and α respectively denote a high-frequency
component detection filter matrix and a weight param-
eter. Too small a weight of α renders the reconstruction
unstable (noisy), whereas too large a weight creates a
blurred image. Through some trials, an adequate value
can be found to reconstruct the image.

The averaged image described in Section 2.2. is
used as the initial high-resolution image to minimize
the objective function in Eq. (7).

The local motion of the k-th frame is used for the
deformation matrix Bk in Eq. (7). The local motion is
estimated as follows. First, the averaged image is gen-
erated from the sequence after compensating the global
motion. Second, the local motion is estimated for the
k-th frame. The averaged image is set as the target
image T ; the convolution of a Gaussian kernel and the
k-th frame after compensating the global motion is set
as the source image S.

The unknown high-resolution image z has no defor-
mation but the observations have local motions. The

Figure 6. Super-resolution image reconstruction for detail
recovery.

local motion for the super-resolution is the motion to
deform the high-resolution image to correspond to the
low-resolution observations. The input frames are used
for the source images S, the averaged image is used for
the target image T , as shown in Fig. 6.

The reason for using the Gaussian convolution is
that the averaged image has a blur compared to the
input frame. The standard deviation of the Gaussian
kernel is obtainable from the motion distribution of the
sequence, as shown in Fig. 2, and a Gaussian fitting
over the histogram of the distribution. However, in real
situations, the parameter estimation method described
in 3.2. performs for two images that have slightly dif-
ferent blur kernels. In our experiments, the standard
deviation of the Gaussian kernel is determined empir-
ically as the smallest value with stability and detailed
deformation outputs between 1.5 and 0.8.

The real object appearance can also be estimated
as averages of the optical flows obtained from the se-
quence [10]. However, optical flow estimation requires
features or textures in an image; a corresponding posi-
tion for a textureless region must be obtained through
an interpolation from neighboring flows. Furthermore,
the estimated optical flow includes some error because
the image patch pair that is used to estimate the op-
tical flow is deformed. The method described in 3.2.
directly and automatically estimates the image defor-
mation whether the image has a sufficient texture or
not.

4. Experimental Results

We conducted experiments using both synthetic im-
ages and real sequences.

The size of all synthetic images is 60× 60 [pixels] to
reduce the computational time. The control points of
9 × 9 are placed at even intervals on the image. The
synthetic image is deformed with B-spline function by
giving displacements to the control points at random
(rectangular distribution with maximum 3 pixels). The
displacement of the non-rigid deformation with the B-



spline basis function is less than the shift values of the
control points; the deformation in the synthetic images
is less than 3 pixels. Additionally, all synthetic images
have additive Gaussian noise for the pixel values with
standard deviation of 5.0.

The real sequences were captured using a 3-
CCD digital videocassette camera (DCR-VX2000;
Sony Corp.) in the progressive scan mode (15
frames/second). The image size is 720 × 480 [pixels].

4.1. Local Motion Estimation Accuracy

Figures 7(a) and 7(b) respectively depict the syn-
thetic images with and without deformation for the
first experiment.

Figure 8 presents the results of estimation accuracy.
A deformed image from (a) by the estimated motion
parameters is compared with the image (b) in posi-
tional root-mean-square error (RMSE) [pixel]. The
horizontal and vertical axes respectively denote the
square root of the number of control points and the
positional RMSE. The dashed line denotes the RMSE
between the images shown in Fig. 7(a) and 7(b), that
is, the RMSE without the local motion estimation. The
solid line represents the RMSE between the deformed
image by the estimated parameters and the image (b).
The RMSE is always less than that in the case without
local motion estimation. The RMSE takes a minimum
value at the 9 × 9 control points, which is the same as

(a) Without deformation (b) With deformation

Figure 7. Synthetic images used for testing motion estima-
tion accuracy.
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Figure 8. RMSE of position using estimated local motion
with respect to density of control points.

the number for the synthetic deformed image (b). The
fewer control points cannot express the exact deforma-
tion, although the noise and texture slightly affect the
results with many control points.

4.2. Local Motion Estimation Stability

Figure 9(a) and 9(b) respectively portray synthetic
images with and without deformation for the second
experiment. The synthetic images have textureless re-
gions compared to images for the first experiment. The
local motion of image (b) is estimated for the source
image (a), with 9 × 9 control points.

Figure 10(a) shows many initial positions in the im-
age shown in Fig. 9(b). The initial positions do not
correspond to the control points; they represent many
positions of pixels in the image. Figures 10(b) and
10(c) respectively show the motion estimation results
(corresponding pixel positions) without (γ = 0 in Eq.
(5)) and with (γ = 5.0), the stabilization term. The
image intensity is reduced in Fig. 10 for better visibil-
ity. The local motion estimation in Fig. 10(b) fails in
the region with less texture, although the results are
stable for all regions in Fig. 10(c), underscoring the
effectiveness of the stabilization term in the proposed
parameter estimation method.

Figure 11 presents the differing intensities RMSE
for the whole image between a deformed image using
the estimated local motion parameters and the image
(b). The triangle marks represent the results without
the stabilization term, which result in instability with

(a) Without deformation (b) With deformation

Figure 9. Synthetic images used for testing motion estima-
tion stability.

(a) initial positions (b) Without stab. term (c) With stab. term

Figure 10. Motion estimation results with and without the
stabilization term.
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Figure 11. RMSE of intensity with respect to the iteration
number.

iteration. The square marks show the results with the
stabilization term, showing the stability with iteration.

4.3. Super-Resolution Results

Figures 12 and 13 show the super-resolution recon-
struction results from sequences under the influence of
the optical turbulence. The image magnification ratio
for the super-resolution is 4 × 4. Figures 12(a) and
13(a) portray the observed image; the white rectangle
regions are processed. Figures 12(b) and 13(b) depict
the magnified observations. Figures 12(c) and 13(c)
show the super-resolution results.

The processed area is 110×40 [pixels] in Fig. 12(a).
The local motion is estimated for this region with 14×7
control points. The averaged image is generated us-
ing 230 frames in the sequence. The local motion es-
timation and the super-resolution reconstruction are
processed using the first 120 frames in the sequence.
The resultant higher resolution image has less noise
and contains more detailed information than the ob-
servations.

The processed area is 128×72 [pixels] in Fig. 13(a).
The local motion is estimated for this region with
16 × 10 control points. The averaged image is gen-
erated using 400 frames in the sequence. The local
motion estimation and the super-resolution reconstruc-
tion are processed using the same 400 frames in the
sequence. The resultant higher resolution image also
has less noise and more detailed information than the
observations; for example, the door handle in the silver
car is clearly distinguishable.

We have compared the results with enlarged original
video frames by image interpolation such as Lanczos
filter to confirm that our results are far beyond them.

The affine global motion is estimated for each frame
in the sequence for the first frame as the reference
in both reconstruction processes. The frame averag-
ing operation uses images after compensating the esti-
mated global motions. The local motion is estimated

(a) Observed image

(b) Magnified observed image

(c) Super-resolution result

Figure 12. Super-resolution result from sequential images
that include optical turbulence for distant objects.

for each region in the frame for the frame-averaged im-
age as the reference. To enhance the image resolution,
the deformation for each frame is used as a different ob-
servation position for the super-resolution reconstruc-
tion process.

The computational time to estimate the global mo-
tion is negligible, although the local motion estimation
takes much time. The use of more frames is better
for generating the averaged image; all frames in the
sequence are used for the averaging operation.

On the other hand, it takes around 30 seconds (Pen-
tium4 2.8 GHz) to estimate the local motion for one
frame in the white rectangle region shown in Fig. 12(a).
The minimum number of frames is determined empir-
ically for an effective super-resolution processing.



(a) Observed image

(b) Magnified observed image

(c) Super-resolution result

Figure 13. Super-resolution results from sequential images
that include optical turbulence for distant objects.

5. Conclusions

This study has proposed an objective function for
an area-based non-rigid registration technique dealing
with textureless regions. The super-resolution recon-
struction process was described using the non-rigid reg-
istration technique. After investigating characteristics
of the non-rigid movement in the sequence under influ-
ence of the optical turbulence, an estimation method of
the real object appearance was described. The super-
resolution reconstruction is used to recover detailed in-

formation that is lost through estimation.
The number of control points was determined em-

pirically; an automatic determination method remains
as a future research theme. An exact model of the op-
tical turbulence must be developed to determine the
number of control points and the minimum number of
frames for frame averaging. This development is an-
other future research theme.
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